
Scaling out PostgreSQL for

write-intensive workloads

Marco Slot <drmarco@citusdata.com>

Lead devs: jason@ sumedh@

Why not postgres?

Real-time, data-intensive applications

require horizontal scaling

NoSQL provides seamless horizontal scaling

What if PostgreSQL could do that?

Citus Data family

cstore_fdw (github)

Columnar storage foreign data wrapper

CitusDB (citusdata.com)

Real-time analytics on sharded tables

pg_shard (github)

Transparently shards tables for real-time reads & writes

What is CitusDB?

CitusDB is a scalable analytics database that
extends PostgreSQL

– CitusDB shards your data and automatically parallelizes
your queries

– CitusDB hooks onto the planner and executor for
distributed query execution.

– Always rebased to newest Postgres version

– Natively supports new data types and extensions

#1 Requested Feature from Citus

Real-time analytics calls for real-time data ingestion

Some customers built their own real-time insert solutions

We also talked to PostgreSQL users. Some considered

application level sharding or migrating to NoSQL solutions.

Customer Interviews

• Dynamically scale a cluster as new machines are added

or old ones are retired.

• Handle node failures.

• Simple to set up and use. Works natively on

PostgreSQL.

• Transactional semantics aren’t as important.

Technical challenges

• How to shard data across cluster?

• What to do in case of failure?

• How to perform distributed query planning and

execution?

• How to make it seamlessly work with postgres?

click_
events
2012
(3 TB)

node #1 (PostgreSQL)

click_
events
2013
(3TB)

node #2

click_
events
2014
(3TB)

node #3

Standard sharding approach

click_
events
2012
(3 TB)

node #1 (PostgreSQL)

click_
events
2013
(3 TB)

node #2

click_
events
2014
(3 TB)

node #3

node #4

Let's add a node

click_
events
2012
(3 TB)

node #1 (PostgreSQL)

click_
events
2013
(3 TB)

node #2

click_
events
2014
(3 TB)

node #3

node #4

Now what?

click_
events
2012
(3 TB)

node #1 (PostgreSQL)

click_
events
2013
(3 TB)

node #2

click_
events
2014
(3 TB)

node #3

click_
events
2012
(3 TB)

node #4 (PostgreSQL)

click_
events
2013
(3 TB)

node #5

click_
events
2014
(3 TB)

node #6

click_
events
2012

node #1 (PostgreSQL)

click_
events
2013

node #2

click_
events
2014

node #3

click_
events
2012

node #4 (PostgreSQL)

click_
events
2013

node #5

click_
events
2014

node #6

Logical sharding

Use “logical shards” so that you can easily

rebalance shards as cluster membership

changes and handle failures

node #1 (PostgreSQL) node #2 node #3

1 3 4

6 7 ..

..

..

1 2 4

7

..

..

2 3 5

6

..

..

Logical sharding

node #1 (PostgreSQL) node #2 node #3

node #4

1 3 4

6 7 ..

..

..

1 2 4

7

..

..

2 3 5

6

..

..

256 MB

node #1 (PostgreSQL) node #2 node #3

node #4 node #5 node #6

1 4 7

6

..

..

1 2 7

8

..

..

2 3 1

8 9 ..

..

..

3 4 9

.. ..

..

..

4 5 9

..

..

..

5 6 9

.. ..

..

..

111110 10

Logical sharding using pg_shard

Master node with pg_shard extension keeps metadata on:

– distributed tables

– shards of a distributed table

– placements of a shard

Shard placements are regular postgres tables on worker

nodes named:

<distributed table name>_<shard id>, e.g. customers_12

1 3

4

worker node #1
(PostgreSQL)

1 2

4

5

worker node #2
(PostgreSQL)

2 3

worker node #3
(PostgreSQL)

. . . .

1 shard =
1 Postgres
table

master node
(PostgreSQL + pg_shard)

shard and shard
placement metadata

Master node failure

Several options:

1. Use streaming replication and fail-over

2. In the cloud, use EBS volumes (metadata size is small)

3. Reconstruct metadata from tables in the worker nodes

4. Back-ups

Getting started using pg_shard

CREATE EXTENSION pg_shard;

Create a regular postgres table:
CREATE TABLE customer_reviews (
customer_id TEXT NOT NULL,
review_date DATE,
...

);

Distribute the table on the given partition key:
SELECT master_create_distributed_table('customer_reviews',
'customer_id');

Create 16 logical shards with 2 placements (replicas) on workers:
SELECT master_create_worker_shards('customer_reviews', 16, 2);

Metadata and Hash Partitioning

postgres=# SELECT * FROM pgs_distribution_metadata.shard;

id | relation_id | storage | min_value | max_value

---+-------------+---------+-------------+-------------

11 | 16790 | t | -2147483648 | -1879048194

12 | 16790 | t | -1879048193 | -1610612739

13 | 16790 | t | -1610612738 | -1342177284

14 | 16790 | t | -1342177283 | -1073741829

15 | 16790 | t | -1073741828 | -805306374

16 | 16790 | t | -805306373 | -536870919

.. | .. | t | .. | ..

Query Execution using pg_shard

• Queries on master intercepted via postgres planner,

executor hooks

• Insert/update/delete/select on distributed tables are

rewritten and forwarded to the right worker node(s)

PostgreSQL Hooks

static planner_hook_type PreviousPlannerHook;
static ExecutorStart_hook_type PreviousExecutorStartHook;

void _PG_init(void)
{
PreviousPlannerHook = planner_hook;
planner_hook = PgShardPlanner;
...

}

static PlannedStmt * PgShardPlanner(Query *query, int cursorOptions,
ParamListInfo boundParams)
{
...

}

Plan Distributed Query

INSERT INTO customer_reviews (customer_id, rating)

VALUES ('HN892', 5);

1. Find clauses on partition key:
customer_id = 'HN892'

2. Find shard ids in pgs_distribution_metadata.shard for which:
min_value <= hashtext('HN892') and hashtext('HN892') <= max_value

3. Rewrite query for shards:
INSERT INTO customer_reviews_16 (customer_id, rating)

VALUES ('HN892', 5);

Execute Distributed Insert

1. Acquire locks for shards, taking into account commutativity rules:
– Select No lock

– Insert Shared lock

– Update Exclusive lock

– Delete Exclusive lock

2. For each active placement:

1. Get a connection to worker from pool

2. Use libpq functions (PQexec) to send query to worker

3. On failure, mark placement as inactive

1 3

4

worker node #1
(PostgreSQL)

1 2

4

5

worker node #2
(PostgreSQL)

2 3

worker node #3
(PostgreSQL)

. . . .

master node
(PostgreSQL + pg_shard)

Insert on 2 placements

1 3

4

worker node #1
(PostgreSQL)

1 2

4

5

worker node #2
(PostgreSQL)

2 3

worker node #3
(PostgreSQL)

. . . .

master node
(PostgreSQL + pg_shard)

Insert failure

1 3

4

worker node #1
(PostgreSQL)

1 2

4

5

worker node #2
(PostgreSQL)

2 3

worker node #3
(PostgreSQL)

. . . .

master node
(PostgreSQL + pg_shard)

Mark placement as inactive

Select on Single Shard

SELECT avg(rating)

FROM customer_reviews

WHERE customer_id = 'XD702';

1. Send query to first placement using libpq:
SELECT avg(rating) FROM customer_reviews_3 WHERE customer_id = 'XD702';

2. Collect results in memory from PQgetResult

3. Write results to user-defined destination

1 3

4

worker node #1
(PostgreSQL)

1 2

4

5

worker node #2
(PostgreSQL)

2 3

worker node #3
(PostgreSQL)

. . . .

master node
(PostgreSQL + pg_shard)

Select from 1st placement

1 3

4

worker node #1
(PostgreSQL)

1 2

4

5

worker node #2
(PostgreSQL)

2 3

worker node #3
(PostgreSQL)

. . . .

master node
(PostgreSQL + pg_shard)

Select failure

1 3

4

worker node #1
(PostgreSQL)

1 2

4

5

worker node #2
(PostgreSQL)

2 3

worker node #3
(PostgreSQL)

. . . .

master node
(PostgreSQL + pg_shard)

Select from 2nd placement

Select on Multiple Shards

SELECT avg(rating)

FROM customer_reviews

WHERE review_date >= '2004-01-01';

pg_shard: Pull relevant data to master and perform query locally
SELECT rating FROM customer_reviews_1 WHERE review_date >= '2004-01-01';

SELECT rating FROM customer_reviews_2 WHERE review_date >= '2004-01-01';

...

CitusDB: Compute average in distributed way

Limitations

• No multi-shard transactions

• No multi-statement transactions

• No join support (upgrade to CitusDB)

• No unique constraints on columns other than the

partition key

Upcoming Features

• More complete SQL coverage?

• Re-balancing?

• Multi-master?

• Range partitioning?

• Auto-recovery?

What would make you use pg_shard?

Summary
pg_shard: Sharding extension for PostgreSQL

https://github.com/citusdata/pg_shard

Logical shards:
1 Add new machines and move shards to them
2 When a machine fails, evenly spread the load
3 pg_shard could also be your sharding library

Simple to use:
1 PostgreSQL hooks are magical
2 Load extension. Create Table. Distribute.
3 JSONB + pg_shard instead of NoSQL?

